軽金属 第56巻 第11号 (2006), 667-672

Al-Mg-Si 合金押出材の二段時効特性* 八太 秀周**・松田 眞一**・吉田 英雄**

Journal of Japan Institute of Light Metals, Vol. 56, No. 11 (2006), 667-672

Two-step aging behaviors of Al-Mg-Si alloy extrusions*

Hidenori HATTA**, Shinichi MATSUDA** and Hideo YOSHIDA**

The two-step aging behaviors of various Al–Mg–Si alloy extrusions have been studied mainly by tensile testing, differential scanning calorimetric analysis (DSC) and electrical resistance measurements. The natural aging at 5°C, 20°C and 40°C for 86.4 ks has a beneficial effect on the strength after artificial aging of the low Mg₂Si containing alloys. On the other hand, the natural aging has a negative effect on the strength after artificial aging of the high Mg₂Si containing alloys. The β'' peak on the DSC curve shifts to a higher temperature with natural aging for the high Mg₂Si alloy. However, no β'' peak was found for the low Mg₂Si alloy. This suggests that there is no negative effect dominated by β'' phase for the lower Mg₂Si alloys.

(Received March 28, 2006 Accepted August 24, 2006)

Keywords: Al-Mg-Si alloy, heat treatment, two-step aging, natural aging, DSC analysis

1. 緒 言

Al-Mg-Si 系合金は代表的な熱処理型合金であり,溶体化 処理後に人工時効すると強度が上昇する¹⁾。本合金は溶体化 処理後から人工時効を開始するまでの間に,室温で保管(以 下,自然時効と称す)すると,人工時効後の強度が変化する 複雑な時効挙動を示すことが知られている^{2)~6)}。自然時効に より人工時効後の強度が上昇する現象を「正の効果」,逆に 強度が低下する場合は「負の効果」と呼ばれており,マグネ シウムおよびシリコン添加量の多い高濃度合金では負の効果 が,添加量の少ない低濃度合金では正の効果が生じやすいと 報告^{2),3)}されている。これらの報告では,自然時効条件との 関係は明確になっていなかったが,最近,自然時効の温度に より「正負の効果」が変化すること⁵⁾や短時間の人工時効で あるベークハード性と自然時効条件との関係⁶⁾などが明らか にされた。しかしながら,それらの研究において調査された 合金組成は限定的なものである。

そこで本研究では、マグネシウムおよびシリコン添加量を 広範囲に変化させた Al-Mg-Si 系合金押出材について、自然 時効温度および時間を管理して2段時効を施し、自然時効に よる正・負の効果について検討した。

2. 実験方法

まず, **Table 1** に示す組成の 24 種類の合金を直径 90 mm のビレットに DC 鋳造した。なお, Al-Mg-Si 合金中に含有す る鉄は, Al-Fe-Si 系晶出物を形成し, Mg₂Si 化合物の形成量 に影響を及ぼすと考えられるため,本実験ではいずれの合金 とも一般的な工業純度の 0.1 mass% 程度で一定とした。Table 1 における Mg_2Si 量, 過剰シリコン量, 過剰マグネシウム量 については,実際の Al-Fe-Si 系晶出物形成量が特定できてい ないことから,マグネシウムとシリコン添加量から計算した

 Table 1
 Chemical composition of the alloys (mass%)

Symbol	Mg	Si	Fe	Al	Mg ₂ Si	ex.Si	ex.Mg
3M2S	0.32	0.18	0.08	bal.	0.49		0.01
3M4S	0.32	0.37	0.09	bal.	0.50	0.19	
3M6S	0.33	0.61	0.09	bal.	0.52	0.42	
3M8S	0.31	0.77	0.09	bal.	0.49	0.59	
3M10S	0.33	0.94	0.13	bal.	0.52	0.75	
3M12S	0.31	1.14	0.12	bal.	0.49	0.96	
5M2S	0.47	0.19	0.09	bal.	0.52		0.14
5M4S	0.50	0.38	0.10	bal.	0.79	0.09	
5M6S	0.52	0.58	0.09	bal.	0.82	0.28	
5M8S	0.47	0.77	0.09	bal.	0.74	0.50	
5M10S	0.56	0.98	0.14	bal.	0.88	0.66	
5M12S	0.51	1.14	0.12	bal.	0.80	0.85	
7M2S	0.68	0.19	0.09	bal.	0.52		0.35
7M4S	0.69	0.38	0.10	bal.	1.04		0.03
7M6S	0.70	0.58	0.10	bal.	1.10	0.18	
7M8S	0.71	0.79	0.10	bal.	1.12	0.38	
7M10S	0.73	0.95	0.13	bal.	1.15	0.53	
7M12S	0.72	1.15	0.12	bal.	1.14	0.73	
9M2S	0.88	0.20	0.10	bal.	0.55		0.53
9M4S	0.88	0.40	0.11	bal.	1.09		0.19
9M6S	0.91	0.61	0.11	bal.	1.44	0.08	
9M8S	0.90	0.81	0.11	bal.	1.42	0.29	
9M10S	0.91	0.94	0.12	bal.	1.44	0.41	
9M12S	0.93	1.17	0.13	bal.	1.47	0.63	

* 第 109 回秋期大会(平成 17 年 11 月)で一部発表。

** 住友軽金属工業㈱研究開発センター(〒 455-8670 愛知県名古屋市港区千年 3-1-12)。(Research and Development Center, Sumitomo Light Metal Industries, LTD. (3-1-12 Chitose, Minato-ku, Nagoya-shi, Aichi 455-8670). E-mail: hidenori_hatta@mail.sumitomo-LM.co.jp

値である。その後、均質化処理を行った後、500℃に誘導加 熱して幅 35 mm×厚さ2 mmの形状に押出し、供試材とした。

溶体化処理以降の熱処理の概略を Fig. 1 に示す。まず,供 試材を 540℃の温度で 3.6ks 保持の溶体化処理後,0℃の氷 水中へ投入した。水中での保持時間も自然時効と考えられる ことから,自然時効の影響を最小限に留める目的で,氷水中 へ投入後 60s 以内に取出し,ただちに液体窒素中で保管し た。液体窒素中での保管が実験に影響を与えないように,保 管時間は 3.6ks 以内とした。その後,液体窒素から取出し, 自然時効なしあるいは5℃,20℃,40℃の恒温槽で 86.4ks 保 持の自然時効を施した後,オイルバスを用いて 180℃で人工 時効を行った。なお,T6 材の強度比較においては 180℃で 21.6ks 保持の条件を標準とした。さらに自然時効なし材につ いては昇温速度制御可能なオーブンを用いて,13.9℃/ks の昇 温速度にて 180℃まで加熱し,続いて 21.6ks 保持する人工時 効も実施した。

得られた試料より押出方向と平行に JIS 5 号引張試験片を 採取し,室温中で初期ひずみ速度 1.39×10⁻³/s にて引張試験 を行った。一部の合金組成の試料では,同様の溶体化処理を 行った後,自然時効なしあるいは 20℃ で 86.4ks の自然時効

Fig. 1 Schematic diagram of heat treatment, (a) without natural aging, (b) with natural aging.

を施した後に 180℃ で人工時効し, ビッカース硬さ(荷重 49N)を測定して時効曲線を作成した。

時効析出挙動の解析として DSC 分析および電気抵抗測定 を行った。DSC 分析は溶体化処理直後および 20℃ で 86.4 ks の自然時効した試料について、入力補償型 DSC を用いて、昇 温速度 40°C/min, 測定温度 0~500°C の条件で行った。本系合 金の時効中の電気抵抗変化は詳細な報告がある⁷⁾が、本実験 では同一試験片で時効中の連続的な変化を測定することを目 的として、1×2×200mmの試験片を用いて、時効中に1.0A の直流電流を通電し、その際の電位差を連続的に(初期の 3.6ks は 60s 間隔, その後は 3.6ks 間隔) 四端子法により測定 して電気抵抗を求めた。電気抵抗測定の時効条件は、①溶体 化処理直後に恒温水槽中で20℃の自然時効, ②溶体化処理 後に自然時効なしにあるいは自然時効した後の試験片をオイ ルバス中で180℃の人工時効とした。それらの自然時効およ び人工時効処理の前後について、ダブルブリッジを用いて液 体窒素中で電気抵抗を測定し、上述の自然時効および人工時 効温度中で測定した時効前後の値を液体窒素中の電気抵抗に 対応させて簡易的に換算した。

3. 結 果

3.1 T6処理後の強度に及ぼす自然時効の影響

自然時効なしあるいは 20°C で 86.4 ks の自然時効後に, 180°C のオイルバスで 21.6 ks 人工時効した後の引張強さを Fig. 2 に示す。自然時効の有無にかかわらず,マグネシウム およびシリコン添加量に伴い引張強さが増加し, Mg₂Si のバ ランス組成 (Mg (mass%): Si (mass%)=1.73:1) よりも過剰 シリコン側において引張強さが高くなる。自然時効の有無の 比較において, 高濃度合金では自然時効した後に人工時効処

Fig. 2 Tensile strength of the alloys aged at 180°C for 21.6 ks using an oil bath, (a) without natural aging and (b) with natural aging at 20°C for 86.4 ks.

Fig. 3 Tensile strength of the artificially aged alloys without natural aging, the alloys were heated 13.9°C/ks until 180°C, then held at 180°C for 21.6 ks during artificial aging using a fine oven.

理した場合の強度の方が低くなる傾向がみられる。すなわち, 2 段時効による負の効果が現れている。

さらに工業的に利用される大気炉ではオイルバス等に比較 して、人工時効の際の昇温速度が遅くなる。そこで自然時効 なし材についてオーブンを用いて 13.9℃/ks で昇温し 180℃ で 21.6ks の人工時効を施した。引張強さを Fig. 3 に示すが、上 述の Fig. 2 (a) の自然時効なし材をオイルバスにより人工時 効した場合に比べ、高濃度合金では強度が若干低くなる傾向 がみられる。このことから人工時効の昇温速度が遅い場合に は、昇温時の時効の影響があることがわかる。

自然時効なしに 180°C で 21.6ks 人工時効(以降, すべてオ イルバスを使用)したときの引張強さと,5°C, 20°C および 40°C で 86.4ks の自然時効を施した後に同様の人工時効した 後の引張強さとの差を Fig. 4 に示す。5°C で 86.4ks の自然時 効を施すと,20°C の場合に比べて高濃度側で負の効果が大き くなり,逆に 40°C では負の効果が小さくなる。このように負 の効果は自然時効温度が大きく影響する。それに対し,正の 効果が生じる低濃度合金では自然時効温度の影響は小さい。 この低濃度合金の正の効果は,低濃度側ほど正の効果が顕著 にはならず,3M2S 合金のように非常に低濃度になる場合は, 5M2S や 3M4S 合金より正の効果が小さくなる。だたし,これ は極めて低濃度のため引張強さ自体が小さいことが一因であ ると推測される。

3.2 「正負の効果」が発現する合金比較

Fig. 5 に正の効果がみられる 5M2S 合金, 正負の効果が軽 微である 5M4S 合金, 負の効果がみられる 9M6S 合金の時効 曲線を示す。9M6S 合金のピーク硬さに達するまでの時間は 5M2S 合金よりも短く, また, 自然時効なしでは時効初期段 階での硬化量が大きくなる。それぞれの合金をピーク硬さで 比較すると 5M2S 合金は正の効果, 9M6S 合金では負の効果 が確認され, 正負の効果が確実に生じていると言える。

溶体化処理直後から 20℃ で自然時効したときの比抵抗の 変化を Fig. 6 に示す。比抵抗の上昇がはじまるまでの時間 は、9M6S 合金が最も短く、最終的な上昇量も大きくなる。 逆に 5M2S 合金は上昇がはじまるまでの時間が長く、最終的 な上昇量も少ない。比抵抗の変化は固溶・析出挙動をマクロ 的に捉えており析出相の同定は困難であるが、合金組成にか かわらず同一種類のクラスタ形成が自然時効中に生じ、その 影響で比抵抗が変化すると仮定すると、低濃度合金の 5M2S

Fig. 4 Influence of natural aging compared with the samples without natural aging on the tensile strength of various Al–Mg–Si alloys after aging at 180°C for 21.6 ks, (a) natural aging at 5°C for 86.4 ks, (b) at 20°C for 86.4 ks and (c) at 40°C for 86.4 ks.

合金でも、9M6S 合金よりもクラスタの生成速度が小さく形成量も少ないものの、クラスタ形成は生じていると考えられる。なお、ここでのクラスタとは従来の報告^{8)~12)}を参照し、強度に寄与する β "相へ遷移しにくい原子の集まりを指し、GP ゾーンとは β "へ遷移する原子の集合体とする。Fig. 7 に180°C の人工時効中の比抵抗変化を示す。各合金とも長時間

Fig. 6 Changes in the electrical resistivity at -196°C during natural aging at 20°C after quenching.

の人工時効を施すと、自然時効の有無により比抵抗変化に差 が認められる。しかし、今回の人工時効の標準条件である 180℃、21.6ksにおいて、その変化量の絶対値の差はわずかで ある。

Fig. 8 に負の効果がみられる 9M6S 合金の,自然時効なし 材と自然時効あり材の DSC 曲線を示す。過去の報告^{8)~13)} を 参照して,Aはクラスタの形成,Bはクラスタの溶解,Cは β "相の析出,Dは β '相の析出,Eは β 相の析出とする。自 然時効した試料は自然時効なし材に比較して,クラスタの形 成に伴う発熱ピークが小さく,逆にクラスタの溶解に相当す る吸熱ピークが大きい。これは自然時効中にクラスタの形成 が進んだことを示唆している。また、自然時効した試料では β "相のピークが高温側で出現し、 β '相のピークと重なって いることがわかる。

Fig. 9 に正の効果がみられる 5M2S 合金における自然時効 なしと自然時効あり材の DSC 曲線を示す。9M6S 合金に比較 して極度にピークが小さいため, Fig. 8 よりもスケールを5 倍

Fig. 5 Aging curves at 180°C without natural aging or with natural aging at 20°C for 86.4 ks, (a) 5M2S, (b) 5M4S and (c) 9M6S alloys.

Fig. 7 Changes in the electrical resistivity at -196°C during aging at 180°C after quenching without natural aging or with natural aging, (a) 5M2S alloy, (b) 5M4S alloy and (c) 9M6S alloy.

Fig. 8 DSC curves of the quenched 9M6S alloy without natural aging and with natural aging at 20°C for 86.4 ks.

Fig. 9 DSC curves of the quenched 5M2S alloy without natural aging and with natural aging at 20°C for 86.4 ks.

に拡大してある。すなわちいずれのピークもとても小さく, 析出量が少ないことを意味している。また,5M2S 合金では クラスタ形成およびその溶解に相当するピークがみられるが, β"相に対応すると言われている C のピークは検出できなかっ た。このことから,正の効果が見られる 5M2S 合金では,β" 相の析出が極めて少ないか析出しない可能性がある。

4. 考 察

過剰シリコン量および過剰マグネシウム量が 0.3 mass% 以 内の比較的バランス組成に近い合金の DSC 曲線より, β'相 と β" 相のピーク出現温度を Fig. 10 に示す。大部分の Mg₂Si 量において、自然時効なし材の β" 相の出現温度は自然時効 ありの場合より低く,また,Mg₂Si量が多いほど β"相の出現 ピーク温度が低くなる傾向にある。今回の DSC 分析では昇温 中の測定であり、人工時効のような等温保持ではないことか ら, 直接 T6 材の析出物を表現はしていないが, 最も強度に 寄与するとされる β"相の出現ピークと引張強さを対応付け ると、DSC 曲線において低い温度から出現する β" 相は強度 向上に寄与しやすいと推測される。しかし、この低温から出 現するピークは、自然時効を施した試料ではより高温側で出 現する。Fig. 6 に示す自然時効中の電気抵抗において、高濃 度合金は比抵抗変化が大きいこと、さらに著者らは 5~40℃ の範囲において低温ほど比抵抗の上昇量が大きくなることを 報告していること⁶⁾から, Mg₂Si 量の増加, 自然時効時間の 増加および自然時効温度が低温ほど β"相に遷移しないクラ スタが自然時効中に形成されやすいと推測される。これは見

Fig. 10 The peak temperature of β' phase and β'' phase on the DSC curves of balanced alloys with different Mg₂Si content.

かけ上,本来 β "として析出すべき溶質原子および焼入れ凍結空孔が,自然時効に伴うクラスタの形成により費やされ, β "相の析出温度域が高温側へ変化することを意味する。

一方,大部分の合金の β' 相は,自然時効の有無にかかわ らず DSC 曲線では 320~340°C の温度域で出現する。このこ とは β' 相の析出挙動は自然時効の影響を受けにくく,Mg₂Si 量の影響により変化しにくいことを示唆している。ただし, 正の効果が見られた低濃度合金では高濃度合金よりも出現温 度が高い傾向にあることから,正の効果が生じる試料では β' 相に何らかの変化が生じている可能性がある。この β' 相が T6 材の強度に与える影響については,さらに検討が必要で ある。

さらに過剰マグネシウム合金および過剰シリコン合金につ いて, DSC 曲線における β' 相と β" 相の出現ピーク温度を過 剰シリコン量あるいは過剰マグネシウム量でまとめたものを **Fig. 11** に示す。過剰マグネシウム合金では β' 相が過剰マグ ネシウム量に伴い低温で析出するが, β' 相の強度への寄与は β"相に比較して小さいことから、この変化が強度へ与える影 響は明確でない。一方,過剰シリコン合金において,自然時 効なし材では過剰シリコン量が多いほど β"相ピークの出現 温度が低くなるが、自然時効あり材ではβ"のピークの出現 温度は過剰シリコン量にかかわらず 300℃付近でほぼ一定と なる。さらに、自然時効中の比抵抗変化において、著者らは 同一 Mg₂Si 含有量とした合金でも、過剰シリコン合金の比抵 抗変化はバランス合金よりも大きくなることを報告してい る⁶⁾。これらのことから、過剰シリコン量が多いほど溶体化 処理直後には β"相の析出が低温から生じるような析出挙動 を示すが、自然時効に伴うクラスタの形成によってβ"相の 析出温度が高温側へ移行すると考えられる。

本実験による DSC 分析を中心とする解析および従来の報告 を参考にすると、低濃度合金と高濃度合金において以下のよ うな析出の違いがあると考えられる。まず、低濃度合金では クラスタの形成あるいは β' 相の析出により硬化量は小さい

Fig. 11 The peak temperature of β' phase and β'' phase on the DSC curves, (a) excess magnesium alloys and (b) excess silicon alloys.

ものの強度が上昇する。また、DSC 分析の結果より自然時効 の影響を受けやすいと考えられる β "相の析出は、本合金で は極めて少ないことから、総合して正の効果となる。一方、 高濃度合金では、クラスタの形成、 β "相、 β 相の析出があ る。クラスタの形成および β 相によるわずかな硬化もある が、 β "相が最も強度に寄与するといわれている。しかし、 DSC 曲線において、 β "相のピーク温度は自然時効に伴い高 温側へ移行するような変化がみられることから、自然時効の 影響を受けやすいことは明らかである。このことから総合し て β "相の析出温度あるいは速度が自然時効の影響を受けて 変化するために、負の効果となると推測される。

5. 結 言

本研究ではマグネシウムおよびシリコン添加量を広範囲に 変化させた Al-Mg-Si 系合金押出材について,自然時効によ る正・負の効果について検討した。その結果,以下に示す結 論を得た。

(1) 低濃度合金では $5\sim40^{\circ}$ C のいずれの自然時効温度でも 正の効果がみられ,自然時効温度の影響は小さい。一方,高 濃度合金では, Mg_2Si 量が多いほど,また自然時効温度が低 いほど負の効果が顕著になる。

(2) DSC 分析において,高濃度合金では溶体化処理後の自 然時効により β "相に対応するピークの出現温度が高温にな る。このことから,自然時効により主要強化相である β "相 の析出温度もしくは速度が変化すると推測される。それに対 し,低濃度合金では β "相に相当するピークは認められない ことから,自然時効に影響されやすい β "相の析出は極めて 少ないと考えられる。

参考文献

- 1) アルミニウムの組織と性質:軽金属学会,(1991),278-295.
- 2) 馬場義雄, 高島 章: 軽金属, 19 (1969), 90-98.
- J. Langerweger: Proc. Aluminium Technology '86, (ed. T. Sheppard), The Institute of Metals, (1986), 216–222.
- 4) 中山栄浩, 中西茂紀: 軽金属, 55 (2005), 199-203.
- 5) 山田健太郎, 里 達雄, 神尾彰彦:軽金属, **51** (2001), 215-221.
- 八太秀周,田中宏樹,松田眞一,吉田英雄:軽金属,54 (2004), 412-417.
- 7) 阿部晴彦,小松伸也,浜岡真人,池田勝彦,桜井健夫:軽金属, 56 (2006), 88-93.
- 8) 松田健二, 池野 進: 軽金属, 50 (2000), 23-36.
- A. K. Gupta and D. J. Lloyd: Proceedings of the 3rd International Conference on Aluminum Alloys, 2 (1994), 21–25.
- 10) 鈴木 寿, 菅野幹宏, 白石泰久: 軽金属, 28 (1979), 233-240.
- 11) 菅野幹宏, 鈴木 寿, 白石泰久: 軽金属, 28 (1978), 553-557.
- 12) 鈴木 寿, 菅野幹宏, 白石泰久: 軽金属, 29 (1979), 197-203.
- 13) G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper: Acta mater., 46 (1998), 3893–3904.